# 🔢 How Binary Is Represented by Hexadecimal
Hexadecimal (or "hex") is a compact way to represent binary numbers using **base-16 digits**. It’s especially useful when working with binary data like the 32-bit codes in the Universal Hex Taxonomy (UHT).
---
## 🧮 The Basics
- **Binary** is base-2: uses only `0` and `1`
- **Hexadecimal** is base-16: uses digits `0–9` and letters `A–F`
| Decimal | Binary | Hex |
|---------|--------|-----|
| 0 | 0000 | 0 |
| 1 | 0001 | 1 |
| 2 | 0010 | 2 |
| 3 | 0011 | 3 |
| 4 | 0100 | 4 |
| 5 | 0101 | 5 |
| 6 | 0110 | 6 |
| 7 | 0111 | 7 |
| 8 | 1000 | 8 |
| 9 | 1001 | 9 |
| 10 | 1010 | A |
| 11 | 1011 | B |
| 12 | 1100 | C |
| 13 | 1101 | D |
| 14 | 1110 | E |
| 15 | 1111 | F |
---
## 🔗 4 Bits per Hex Digit
Every **4 binary digits (bits)** make **1 hex digit**.
**Example:**
Binary: 10111111
Split:Â 1011 1111
Hex:Â Â BÂ Â F
So `10111111` in binary = `BF` in hex.
---
## 📦 UHT Code Example
UHT codes are **32 bits**, grouped into **4 sections of 8 bits**:
- Physical traits: bits 1–8
- Functional traits: bits 9–16
- Abstract traits: bits 17–24
- Social traits: bits 25–32
**Example:**
Binary: 11010111 10001000 00000000 11000101
Hex:Â Â D7Â Â Â Â 88Â Â Â Â 00Â Â Â Â C5
UHT Code: D78800C5
---
## ✅ Why Use Hex?
- Easier to read than long binary strings
- Every hex digit = exactly 4 bits
- Widely used in digital systems
- Essential for compact encoding in systems like UHT